POWERMETER

EPR-04 / EPR-04S

TECHNICAL DATA
Operating Voltage (Un)
Operating frequency (f)
Auxiliary supply Power Consumption
Measuring Input Power Consumption
$V_{\text {In }}$
In
Measuring Range
Measuring Category
Class
Oltage Transformer Ratio
Max. Ctr \times Vtr
Demand Time
Serial Interface (for EPR-04S)
Baud Rate (for EPR-04S)
Address (for EPR-04S)
Pulse Output
Switch Period
Operation Current
Operation Voltage
Input
Ambient Temprature
Display
Equipment Protection Class
Box Protection Class
Box Material
Installation
Weight
Installation Category

Factory Settings

Trafo:
Ctr (Current Transformer Ratio) : 0001 trn (Turn number for CT-25 device): 01
Utr (Voltage Transformer Ratio) : 0001.0 CAL (Calculation Method) : 1

Pin: 0000 (Not Activated)
RS-485:
Adr (Address) : 1
Bau (Baud Rate)
PAr (Parity) : no
PRECAUTIONS FOR INSTALLATION AND SAFE USE
$\triangle_{\text {In }}^{\text {In CT- } 25 \text { (120A }}$ (120) compliant models, only CT-25 current transformer must be used
Oather type of CT's have a high risk, only dam-25e current to dovice.

- Disconnect all 1 ower beforo working result tin death
- When the device is connected to the network
-Do not try to clean the device to with solvent or or the like. Only clean with dry cloth.
Verify correct terminal connections when wiring.
- Electrical equipment should be

Eng Cnt :
-1 (Energy Counter 1) : on
-2 (Energy Counter 2) : on
PULSE:
-1 (Output 1) : A
o-2 (Output 2) : r-L
dEtı (Delay Time) : 15
Please look at the back labels on
the device
$45-65 \mathrm{~Hz}$
< 4 VA
$<1 \mathrm{VA}$
10-300VAC $45-65 \mathrm{~Hz}$. (L-N)
10-500VAC $45-65 \mathrm{~Hz}$. (L-L)
: 0.05-5.5 A~
2-120 A ~ (for CT-25)
0...215 M(W,VAr,VA)
999999999.999 kWh,kVArh
1 ± 1 digit [(\% 10-\%110) xFull Scale]
0. 1 ... 4000.0
$1 \ldots .1000$
40.000
1-60 min. (programmable)
MODBUS RTU (RS 485)
: Optically Isolated, programmable
2400-38400 bps
No, odd, Even, 8 Data Bits, 2 Stop Bits
Min. 100 msec pulse perriod
80 msec pulse width
: Max. 50 mA
5.... 24 VDC , max. 30 VDC
$12 . .48 \mathrm{VDC}$
$-5^{\circ} \mathrm{C}+50^{\circ} \mathrm{C}$
$-5^{\circ} \mathrm{C} ;+50^{\circ} \mathrm{C}$
Red LED Display
: PR-19, PK-26
Double Insulation-Class II (回)
: IP 40
Non-flammable
Panel Mounted (PR-19)
Rail Mounted (PK-26)
$: 2.5 \mathrm{~mm}^{2}$
${ }_{0}^{0.45 \mathrm{~kg} \text { (PR-19, PK-26) }}$

POWERMETER

EPR-04 / EPR-04S

General :
EPR-0.4/O4S is a microprocessor based device which is developed for measuing the power and energy values in an Electrical Network. Measured
parameters are displayed in 4 displays separately EPR-04S has an MODBUS

Using of EPR-04/04S
Parameters (Cosp; W; VAr; VA; kWh, kVarh) are monitored in $\mathrm{L} 1, \mathrm{~L}, \mathrm{~L}, ~$ displays by scrolling UPPDOWN butitons. Total Active ((W)), Total Reactive Power (EVAr), Total Apparent Power (EVA) and Cosp values and average
alues of these parameters are monitored in 4 th display. Digital Input
EPR P -04/ I/04S hat has 2 digital inputs. Digital inputs have 2 functions

- When a remote device has activated situation of this device which When a remote devicic has activated, situation of this device which (Batery, thermostat, circuit breaker and motor position).
Controlling energy counters and determining which energy counter will be - Controling energy counters and determining wich energy counter will be
active (Example: tis is used for measuring of energy separately at the using
on teetwork Energy Pulse Outputs
EPR-04/O4S has 2 Energy Pulse Outputs. These outputs give the pulses

Monitoring of Min Max. and Max Demand Values Min. and max. values are detined tor W, VAr, VA, $\Sigma W, \Sigma V A F, \Sigma$ VA; demand
values are defined for W, VAr, $V A, \Sigma W, \Sigma V A, \Sigma V A r$.
If measured instant value is smaller than mini value which was stored before,
it is stored as new min value. If measured instant value is greater than max
is stored as new min. value. If measured instant value is greater than max
value which was stored before, it is stored as new max. value.
Demand value is the average value of the measured values in demand time 15 minute).
f one of defin
If one of defined parameters is displayed (ie. "W") when deman button is
pressed min., max or max. demand values are displayed. When an undefined pressed min,., max or max. demand dalues are displayed. When an undefined
parameter is displyaed (ie. "Cos ϕ^{\prime}) if demand button is pressed, instant value
scontid

H-L-M LEDs

H-L-M LEDs are deaicated to displaying the min., max. and max. demand
H: Maximum Value, L: Minimum Value, M: Max. Demand Value

Calculation Methods for Active / Reactive Power Values power's direction is in inversed side blinks it represens
There are two methods for calculating total active and total reactive powers. There are two methods for calculating total active and total reactive powers:

1) Active / Reactive power can be calculated by summing import and export values and displaying as a single value.
2) Active / Reactive power can
3) Active / Reactive power can be caliculated according to direction as

Note:

1) TTe dot at the most right digit of the fourth display (During $\mathrm{\Sigma W}$ is
is displayed) represents that displayed value is exporp tactive power value.
Vice versa, displayed value is import active power value. Vice versa, displayed value is import active power value.
2) The dot at the most right digit of the fourth display (During
VVAr is dispolayed) represenst that displayed value is capacitive reactive power value. Vicie versa, displayed value is inductive reactive power value.
3) The displayed parameter will not change if power is off after 30
seconds of stand-by (ie. WW) of stand-by (ie. W).

Cosp		2W (Toil
W (Active Power)	AE (WW) (Export Acive Enegy)	EVAr (Total Reactive Power)
Var (Reactive Pow	If (kVAA) (Impor Reactive Enegy)	EVA (Toata Appaent Power)

FUNCTIONS OF BUTTONS
When W led lights,its shows max.power values which are measured sed tor moving upwards in the menu
When W led lights, it shows min.power values which are measured instantaneously and it stows totol de
It is used for passing between parameters such as W, Var, VA,
KWh, KVArh, cosp. When it is pressed tor 3 second, adiustment KWh, KVArh, cosp. When it is pressed for 3 second, adjustment
mode is entered. In the adjustment mode it is used for saving parameters and moving to the sub menu.
In the adjustment mode, it is used for entering to the upper menu
or it is used for quiting from the adjustment mode without saving the values.
A user password is activated and set button is pressed for
seconds, a pin code is required in order to enter to the menu.

1.Saving Parameter Changes How to change various parameters

How to change various parameters of the device is explained under their
espective tities. Chandin the respective titles. Changing the parameters means that these parameters are
saved. To save
(5I) Ater you changed the relevant parameter, press the SET button. You wil

Spbe taken to the upper menu.
Press the SET button until (SAU SEt yES) is displayed on the screen.

 2.Transformer

Current transformer ratio, voltage transformer ratio, reactive energy
alculation method and transformer turn number (only for devices
2.. Entering Current Transformer Ratio

Current transformer ratio is entered in this menu (This menu isn't vaiable for devices with CT-25.).
can be entered between
trflet 0|001…. ErF[Ctr| 2000
Note I I there isn't a current transformer between EPR-04/04S and
hes sytum that is being measured, enter the current transformer
atio as 1 .

POWERMETER

EPR-04 / EPR-04S

ErFIEEr| 0006

Example: If you are using a digital meter and you want to use the voltage
shifting method for reactive energy calculation, you must select the value

If you are using a digital meter and you want to use the power triangle
method for reactive energy calculation, you must select the value as 5 .

CRL [LE 5

2.4. Programming the Turn Number:
 he turn number, which is the number of how many tour the current
able has rounded into the CT-25. Numbers can be selected
Fa between $1-20$. Greater the number of turn means greater the
trn

3. Demand Time Setup:

PE In this menu, demand time is set between $1-60$ minutes. activater yet.
the changes.)
4. Pulse

 Mport and export active energy values become the same as the defined puls

 pulse rate, one pulle is icreated.

 $r-\mathrm{C}$ (Reactive Capacitive); The defined value to create one pulse (Please
 4.1. Pulse Rate (PUL SE rAt)

e energy value to create one pulse is entered in this menu
L SE rAt can be set to one of the options below
men nol ED is during parameter changing.
$10,100(\mathrm{kWh} / \mathrm{KV}$ Arh); Th . These va
values are selectable when ' \mathbf{k} ' LED Slit during garameter changing
4.2. Pulse Output-1 (Pulse 0-1):

POWERMETER

EPR-04 / EPR-04S

PK 26 Box Connection Diagram

3 Phase neutral

*Available only for EPR-04S
Note: For CT-25 models:
k :
k : When CT-25 is used, Rea cable is connected to k termina

POWERMETER

EPR-04 / EPR-04S

PR 19 Box Connection Diagram

3 Phase neutral

3 Phase without neutral

3 Phase without neutral c
Aron wiring configuration

*Available only for EPR-04S

Note: For CT-25 models
k : When CT-25 is used, Red cable is connected to k terminal
: When $\mathrm{CT}-25$ is used, Black cable is connected to terminal

POWERMETER

EPR-04 / EPR-04S

PUL SE rAt / PUL SE 0-1/PUL SE o-2

$$
\text { Press SET button for } 3 \text { seconds (trA Fo menu is displayed) }
$$

By using UP-Down buttons, find "PULSE" menu.
Press SET button ("PUL SE rAt" menu is displayed)

$$
\begin{aligned}
& \text { By using UP-Down buttons, select "PUL SE rAt", } \\
& \text { "PUL SE O-1" or "PUL SE O-2". }
\end{aligned}
$$

Press SET button

$$
\begin{aligned}
& \text { By using UP-Down buttons, type the required value for } \\
& \text { selected parameter. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Press SET button, (Data is entered but is not activated yet. } \\
& \text { Peease efeer to } 1 \text { Saving Parameter Changes to activate the } \\
& \text { changes. }
\end{aligned}
$$

Changes.) (Eng Cnt) Menu

$\begin{aligned} & \mathrm{E}-2 \text { : " } \mathrm{E}-1 \text { " does not count when " } \mathrm{E}-2 \text { " is activated. (Unly for " } \mathrm{E}-1 \text { ") } \\ & \mathrm{E}-1 \text { : " } \mathrm{E}-2 \text { " does not count when " } \mathrm{E}-1 \text { " is activated. (Only for " } \mathrm{E}-2 \text { ") } \end{aligned}$ Note: Counting status is undefined if $\mathrm{E}-2$ is selected on $\mathrm{E}-1$ and if $\mathrm{E}-1$ is selected

$$
\begin{aligned}
& \text { not count. } \text { Press SET button for } 3 \text { seconds (trA Fo menu is displayed) } \\
& \text { SET } \\
& \text { By using UP-Down buttons, find "Eng Cnt" menu. } \\
& \text { Press SET button ("Eng CntE-1" menu is displayed) } \\
& \text { By using UP-Down buttons, select "E-1" or "E-2". } \\
& \text { Press SET button. } \\
& \text { By using UP-Down buttons, select "on", "1-1", "-2" or "E-1 / E-2". } \\
& \text { Press SET button, (Data is entered but is not activated yet. } \\
& \text { Peaser eferer to } 1 \text {. Saving Parameter Changes to activate the }
\end{aligned}
$$

6.Monitoring and Erasing of minimum and maximum values:

rES ${ }^{\text {In this menu, values of min., max., demand or energymeter's are }}$
rES erased. It savest the intitintaneously measurud mine and max. values EUR-O4/04S into its memory. Please kindly look at to the section of
UNCTIONS OF BUTTONS for min. and max. values. Note: Measured electical parameters which are saved to the memory are not affected trom the electrici interuptions.
In the rESET dEE-1/ $\mathrm{E}-2$ menu; when you choose yES and quit from all menus,
 energymeters are erased at the same time. Follow the below steps in order to
erasing the values of min., max.. E -- and $\mathrm{E-}$-2 In the measurement position.

 but is not activated y yet.
to activate the changes.)
7. Serial Communication (Available only for EPR-04S) EPR-04S has MODBUS RTU communication protocol which is optica isolated. All measured parameters can be transter to the comptuter.
Transtomer ratios and communication parameters can be set. Saved
demand and anstormer ratios and communication p and
7.1. Parameter Settings

Address Parameters: : Value can be enter between 001-247.
Baud Rate Parameters : Value can be selected as $2400,4800,9600$,
Baud Rate Parameters : Value can be selected as 2400,480 , 1 12000 and 88400 bps.
10 ." "o
Parity Parameters : "no", "odd" and "EUEn" can be selected
§it
(5I Press SET button for 3 seconds (trA Fo menu is displayed)
8. $\begin{aligned} & \text { By using Up-Down buttons, } \\ & \text { find "nS }-485 \text { " menu. }\end{aligned}$
(1) Press SET button ("Adr ESS" menu is displayed)

- +

Find the menu which is programmed in Adr ESS / bAU d/PArtity
menus by scrolling UP-DOWN buttons.
ileruct oy serving

Press SET button ("001 / 9600 / no" is displayed.)
Q
Enter the value of related parameters by scrolling UP/DOWN
buttons ($(001 \ldots 247 / 2000 \ldots 38400 / / \mathrm{ho}$, EUEN, odd).
Press SET button, Adr ESS / DAU d/ PArtty is displayed. (Data is
entered but is not activated yet. Pleaese refer to 1. Saving Parameter
Changes to activate the changes.
MODBUS RTU PROTOCOL (Available only for EPR-04S)
Standard MODBUS RTU message is shown below.

T	ADDRESS 8 BIT	FUNCTION 8 BIT	DATA NX8BIT	CRCH	CRCL	T

The T times corresponds to a time in which data must not be exchanged
on the communication bus to allow the connected devices to eceocanize the end of one message and the beginning of another. This time must be least 3.5 characters at the selected baud rate. Adress range ($1-247$) is
aaddress of he connected dovice. The data tield contains data sent to the
slave by master or cate senter slave by master or data sent tom master by slave.
CRC is a error check method by using MODBUS RTU protocol and consits CRC is a erा
of 2 bytes.
Available Modbus Function

O3H	READ HOLD REGITTERS
$06 H$	PRESEE SINGLEE REGISTER
$10 H$	PRESET MuLTPLEE REGISTERS

POWERMETER

EPR-04 / EPR-04S

For example to read phase 1 voltage by sending a message to the device.
010300000002 XXXX
03 Function
00 MSB address
14 LSB address
00 Register number MSE
02 Register number LSB
XXCRC MSB
XX CRC LSB
Preset Single Register (06) function is used for writing the setting values,
erasing the energy counter or reseting the min., max., demand values. erasing the energy counter or reseting the min., max., dem an
Current transformers ratio can be set 0 -2000, voltage transormer ratio can
be set $1-40000$ Min be set $1-40000$. Min. Max. and Demand values can be only clear. If sent
value is outside of this range device responds with an error message. i.e. Setting CT as 100 ;
$010680020064 \times X X$

010680020064 XX
01 Device address
06 function
06 Function
80 MS adress
02 LSB address
O2 Data adse
64 Data LSB
XX CRC MSB
$\times \times$ CRC LSB
Preset Multiple Register $(10 \mathrm{H}$) is used to set more then one register at same
time.
i.e. Setting CT as 100, Ut as $20.0 ;$
0110800000020400 C 80064
01 Device Address
10 Function
10 Function
80 MS address
80 MSB address
00 LSB address
00 Register numb
00 Register number MSB
02 Register number LSB
02 Registernum
00 Byte ount
00 Data MSB
C8 Data LSB
Oo Data MSB
64 Data LSB
XX CRC MSB

Digital Inputs (Available only for EPR-04S)

If $12-48 \mathrm{VAC} / \mathrm{DC}$ is applied to Int (Input 1), 0 (zero) bit of DIN register is
set as " 1 ". Otherwise 0 (zero) bit is set as 0 ".
 as "1". Otherwise, 1st bit it set as "0".
 0.980 Cos φ will be sent as $000003 D 4 \mathrm{H}$. Energy values are sent in 64 bytes Specifications for data cable;
Specifications for
-24
AWG or thicker
-
-Less than 100 ohm/km

- Nominal Characteristic impedance at 100 kHz of 100 ohms - Less than $60 \mathrm{pF} / \mathrm{m}$ mutual capacitance (between two wires in a pair)
- Less than $120 \mathrm{pF} / \mathrm{m}$ mutual pair capacitance (the capacitance
between one wir
- Twisted Pair
ERROR CODES (Available only for EPR-04S)
Slave device (EPR-04S) sends error message when receive any missing query. Error codes are given below.
01 IIvvilid function If tany message except given above is used, then 01 eror messages will
02
Invalid
Register:
02 Invalid Register: Error 02 will be send when a reading of a register is
requested except the registers which mentioned in table.

8. User password Setup:

Pin $\begin{aligned} & \text { Inthis menu user password is defined and activated. You must define } \\ & \text { and a } \\ & \text { ativate at } \\ & \text { digit }\end{aligned}$ om the illegal usage. There are 2 sub menu under the Pin menu
8.1. Changing of User Password:
\boldsymbol{P} in $\begin{aligned} & \text { This menu is used for changing the user password. } \\ & \text { Nactory defaut value for user password is "0000 }\end{aligned}$
LHR
n GE For changing the user password:lin the measurement mode

in ${ }^{\text {B.2. }}$ Ahis menu user used for activating the user password In $\begin{aligned} & \text { This menu is used for activating the user password } \\ & \text { Atter user password is activated, while the instan } \\ & \text { values are observed, user passsword is required in }\end{aligned}$ ALE values are observed, user password is required in HIR ${ }^{\text {Note: }}$ Factory defaul value of user password is " 0000 "

POWERMETER

EPR-04 / EPR-04S

EPR-04S COMPUTER CONNECTION

31 DEVICES CAN BE CONNECTED AT THE SAME LINE

MAX. 247 DEVICES CAN BE CONNECTED AT SAME LINE BY USING REPEATER.

Dimensions

